REFERENCES

1. Khan, F. M. N. U.; Rasul, M. G.; Sayem, A.; Mandal, N. K. Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: a comprehensive review. J. Energy. Storage. 2023, 71, 108033.

2. Cheng, W.; Zhao, M.; Lai, Y.; et al. Recent advances in battery characterization using in situ XAFS, SAXS, XRD, and their combining techniques: from single scale to multiscale structure detection. Exploration 2024, 4, 20230056.

3. Nekahi, A.; Madikere, Raghunatha., Reddy., A. K.; Li, X.; Deng, S.; Zaghib, K. Rechargeable batteries for the electrification of society: past, present, and future. Electrochem. Energy. Rev. 2025, 8, 235.

4. Park, C. Y.; Kim, J.; Lim, W. G.; Lee, J. Toward maximum energy density enabled by anode-free lithium metal batteries: recent progress and perspective. Exploration 2024, 4, 20210255.

5. Huang, Z.; Jaumaux, P.; Sun, B.; et al. High-energy room-temperature sodium-sulfur and sodium-selenium batteries for sustainable energy storage. Electrochem. Energy. Rev. 2023, 6, 182.

6. Guo, Y.; Niu, Q.; Pei, F.; et al. Interface engineering toward stable lithium-sulfur batteries. Energy. Environ. Sci. 2024, 17, 1330-67.

7. Sharma, R.; Kumar, H.; Kumar, G.; et al. Progress and challenges in electrochemical energy storage devices: Fabrication, electrode material, and economic aspects. Chem. Eng. J. 2023, 468, 143706.

8. Liu, R.; Wei, Z.; Peng, L.; et al. Establishing reaction networks in the 16-electron sulfur reduction reaction. Nature 2024, 626, 98-104.

9. Wu, J.; Ye, T.; Wang, Y.; et al. Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li-S batteries. ACS. Nano. 2022, 16, 15734-59.

10. Li, J.; Niu, Z.; Guo, C.; Li, M.; Bao, W. Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: a review. J. Energy. Chem. 2021, 54, 434-51.

11. Li, G.; Wang, S.; Zhang, Y.; Li, M.; Chen, Z.; Lu, J. Revisiting the role of polysulfides in lithium-sulfur batteries. Adv. Mater. 2018, 30, e1705590.

12. Yu, J.; Pinto-Huguet, I.; Zhang, C. Y.; et al. Mechanistic insights and technical challenges in sulfur-based batteries: a comprehensive in situ/operando monitoring toolbox. ACS. Energy. Lett. 2024, 9, 6178-214.

13. Zhou, L.; Danilov, D. L.; Qiao, F.; et al. Sulfur reduction reaction in lithium-sulfur batteries: mechanisms, catalysts, and characterization. Adv. Energy. Mater. 2022, 12, 2202094.

14. Deng, R.; Wang, M.; Yu, H.; et al. Recent advances and applications toward emerging lithium-sulfur batteries: working principles and opportunities. Energy. Environ. Mater. 2022, 5, 777-99.

15. Yu, S.; Cai, W.; Chen, L.; Song, L.; Song, Y. Recent advances of metal phosphides for Li-S chemistry. J. Energy. Chem. 2021, 55, 533-48.

16. Hencz, L.; Chen, H.; Wu, Z.; et al. Highly branched amylopectin binder for sulfur cathodes with enhanced performance and longevity. Exploration 2022, 2, 20210131.

17. Zhai, P.; Peng, H.; Cheng, X.; et al. Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium-sulfur batteries. Energy. Storage. Mater. 2017, 7, 56-63.

18. Zhou, G.; Li, L.; Ma, C.; et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano. Energy. 2015, 11, 356-65.

19. He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L. F. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. ACS. Nano. 2013, 7, 10920-30.

20. Ruan, J.; Sun, H.; Song, Y.; et al. Constructing 1D/2D interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery. Energy. Mater. 2022, 1, 100018.

21. Wang, Q.; Zhao, H.; Li, B.; et al. MOF-derived Co9S8 nano-flower cluster array modified separator towards superior lithium sulfur battery. Chin. Chem. Lett. 2021, 32, 1157-60.

22. Tao, X.; Wang, J.; Liu, C.; et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.

23. He, J.; Chen, Y.; Manthiram, A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy. Environ. Sci. 2018, 11, 2560-8.

24. Liu, D.; Zhang, C.; Zhou, G.; et al. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270.

25. Zheng, Y.; Yi, Y.; Fan, M.; et al. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy. Storage. Mater. 2019, 23, 678-83.

26. Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

27. Ye, X.; Wu, F.; Xue, Z.; et al. Accelerated polysulfide conversion by rationally designed NiS2-CoS2 heterostructure in lithium-sulfur batteries. Adv. Funct. Mater. 2025, 35, 2417776.

28. Huang, C.; Yu, J.; Zhang, C. Y.; et al. Electronic spin alignment within homologous NiS2/NiSe2 heterostructures to promote sulfur redox kinetics in lithium-sulfur batteries. Adv. Mater. 2024, 36, e2400810.

29. Zhao, H.; Wu, J.; Chen, T.; et al. Cobalt-doped molybdenum sulfide as an interlayer facilitates polysulfide conversion to obtain high-performance lithium-sulfur batteries. J. Energy. Storage. 2024, 101, 113903.

30. Ren, X.; Wu, H.; Guo, Y.; et al. The impact of oxygen content in O-doped MoS2 on the kinetics of polysulfide conversion in Li-S batteries. Small 2024, 20, e2312256.

31. Li, R.; Sun, H.; Chang, C.; Yao, Y.; Pu, X.; Mai, W. In situ induced cation-vacancies in metal sulfides as dynamic electrocatalyst accelerating polysulfides conversion for Li-S battery. J. Energy. Chem. 2022, 75, 74-82.

32. Yao, Y.; Chang, C.; Sun, H.; et al. Hollow Ni3Se4 with high tap density as a carbon-free sulfur immobilizer to realize high volumetric and gravimetric capacity for lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 25267-77.

33. Cai, D.; Liu, B.; Zhu, D.; et al. Ultrafine Co3Se4 nanoparticles in nitrogen-doped 3D carbon matrix for high-stable and long-cycle-life lithium-sulfur batteries. Adv. Energy. Mater. 2020, 10, 1904273.

34. Mosavati, N.; Salley, S. O.; Ng, K. S. Characterization and electrochemical activities of nanostructured transition metal nitrides as cathode materials for lithium sulfur batteries. J. Power. Sources. 2017, 340, 210-6.

35. Jeong, T.; Choi, D. S.; Song, H.; et al. Heterogeneous catalysis for lithium-sulfur batteries: enhanced rate performance by promoting polysulfide fragmentations. ACS. Energy. Lett. 2017, 2, 327-33.

36. Zhang, L.; Chen, X.; Wan, F.; et al. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries. ACS. Nano. 2018, 12, 9578-86.

37. Weng, W.; Xiao, J.; Shen, Y.; Liang, X.; Lv, T.; Xiao, W. Molten salt electrochemical modulation of iron-carbon-nitrogen for lithium-sulfur batteries. Angew. Chem. Int. Ed. 2021, 60, 24905-9.

38. Wang, S.; Liu, X.; Duan, H.; Deng, Y.; Chen, G. Fe3C/Fe nanoparticles embedded in N-doped porous carbon nanosheets and graphene: a thin functional interlayer for PP separator to boost performance of Li-S batteries. Chem. Eng. J. 2021, 415, 129001.

39. Ye, Z.; Jiang, Y.; Qian, J.; et al. Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium-sulfur batteries. Nano. Energy. 2019, 64, 103965.

40. Wu, Z.; Chen, S.; Wang, L.; et al. Implanting nickel and cobalt phosphide into well-defined carbon nanocages: a synergistic adsorption-electrocatalysis separator mediator for durable high-power Li-S batteries. Energy. Storage. Mater. 2021, 38, 381-8.

41. Wang, F.; Han, Y.; Xu, R.; et al. Establishing transition metal phosphides as effective sulfur hosts in lithium-sulfur batteries through the triple effect of “confinement-adsorption-catalysis”. Small 2023, 19, e2303599.

42. Susarla, S.; Puthirath, A. B.; Tsafack, T.; Salpekar, D.; Babu, G.; Ajayan, P. M. Atomic-level alloying of sulfur and selenium for advanced lithium batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 1005-13.

43. Liu, Q.; Wu, Y.; Li, D.; et al. Dilute alloying to implant activation centers in nitride electrocatalysts for lithium-sulfur batteries. Adv. Mater. 2023, 35, e2209233.

44. Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 2020, 59, 12636-52.

45. Xie, J.; Li, B. Q.; Peng, H. J.; et al. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv. Mater. 2019, 31, e1903813.

46. Li, B.; Kong, L.; Zhao, C.; et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat 2019, 1, 533-41.

47. Zhang, Y.; Zhang, R.; Guo, Y.; Li, Y.; Li, K. A review on MoS2 structure, preparation, energy storage applications and challenges. J. Alloys. Compd. 2024, 998, 174916.

48. Cao, Y.; Lin, Y.; Wu, J.; et al. Two-dimensional MoS2 for Li-S batteries: structural design and electronic modulation. ChemSusChem 2020, 13, 1392-408.

49. Liu, Y.; Lin, Z.; Bettels, F.; et al. Molybdenum-based catalytic materials for Li-S batteries: strategies, mechanisms, and prospects. Adv. Energy. Sustain. Res. 2023, 4, 2200145.

50. Liu, Y.; Cui, C.; Liu, Y.; Liu, W.; Wei, J. Application of MoS2 in the cathode of lithium sulfur batteries. RSC. Adv. 2020, 10, 7384-95.

51. Hussain, I.; Amara, U.; Bibi, F.; et al. Mo-based MXenes: synthesis, properties, and applications. Adv. Colloid. Interface. Sci. 2024, 324, 103077.

52. Hua, W.; Sun, H.; Xu, F.; Wang, J. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare. Met. 2020, 39, 335-51.

53. Miao, M.; Pan, J.; He, T.; Yan, Y.; Xia, B. Y.; Wang, X. Molybdenum carbide-based electrocatalysts for hydrogen evolution reaction. Chem. A. Eur. J. 2017, 23, 10947-61.

54. Wan, C.; Regmi, Y. N.; Leonard, B. M. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2014, 53, 6407-10.

55. Ramqvist, L.; Hamrin, K.; Johansson, G.; Fahlman, A.; Nordling, C. Charge transfer in transition metal carbides and related compounds studied by ESCA. J. Phys. Chem. Solids. 1969, 30, 1835-47.

56. Jansen, S. A.; Hoffmann, R. Surface chemistry of transition metal carbides: a theoretical analysis. Surf. Sci. 1988, 197, 474-508.

57. Zhang, Y.; Wang, Y.; Guo, C.; Wang, Y. Molybdenum carbide-based photocatalysts: synthesis, functionalization, and applications. Langmuir 2022, 38, 12739-56.

58. Zhong, Y.; Xia, X.; Shi, F.; Zhan, J.; Tu, J.; Fan, H. J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286.

59. Xie, J.; Li, S.; Zhang, X.; et al. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 2014, 5, 4615-20.

60. Sun, M.; Wang, Z.; Li, X.; et al. Rational understanding of the catalytic mechanism of molybdenum carbide in polysulfide conversion in lithium-sulfur batteries. J. Mater. Chem. A. 2020, 8, 11818-23.

61. Razaq, R.; Sun, D.; Xin, Y.; et al. Enhanced kinetics of polysulfide redox reactions on Mo2C/CNT in lithium-sulfur batteries. Nanotechnology 2018, 29, 295401.

62. Qian, J.; Xing, Y.; Yang, Y.; et al. Enhanced electrochemical kinetics with highly dispersed conductive and electrocatalytic mediators for lithium-sulfur batteries. Adv. Mater. 2021, 33, e2100810.

63. Wang, L.; He, L.; Cheng, Y.; et al. P-doped Mo2C nanoparticles embedded on carbon nanofibers as an efficient electrocatalyst for Li-S batteries. Chem. Eng. J. 2024, 490, 151530.

64. Chen, K.; Zhu, Y.; Huang, Z.; et al. Strengthened d-p orbital hybridization on metastable cubic Mo2C for highly stable lithium-sulfur batteries. ACS. Nano. 2024, 18, 34791-802.

65. Li, J.; Shi, K.; Pan, J.; et al. Designing electrochemical nanoreactors to accelerate Li2S1/2 three-dimensional growth process and generating more Li2S for advanced Li-S batteries. Renewables 2023, 1, 341-52.

66. Yang, J.; Zhao, S.; Lu, Y.; Zeng, X.; Lv, W.; Cao, G. In-situ topochemical nitridation derivative MoO2-Mo2N binary nanobelts as multifunctional interlayer for fast-kinetic Li-Sulfur batteries. Nano. Energy. 2020, 68, 104356.

67. Ma, Y.; Chang, L.; Yi, D.; et al. Synergetic effect of block and catalysis on polysulfides by functionalized bilayer modification on the separator for lithium-sulfur batteries. Energy. Mater. 2024, 4, 400059.

68. Yu, B.; Chen, D.; Wang, Z.; et al. Mo2C quantum dots@graphene functionalized separator toward high-current-density lithium metal anodes for ultrastable Li-S batteries. Chem. Eng. J. 2020, 399, 125837.

69. Shi, H.; Sun, Z.; Lv, W.; et al. Necklace-like MoC sulfiphilic sites embedded in interconnected carbon networks for Li-S batteries with high sulfur loading. J. Mater. Chem. A. 2019, 7, 11298-304.

70. Ji, Y.; Zhang, J.; Yang, N.; et al. MoC nanoparticles decorated carbon nanofibers loaded with Li2S as high-performance lithium sulfur battery cathodes. Appl. Surf. Sci. 2025, 679, 161263.

71. Li, H.; Zheng, W.; Wu, H.; Fang, Y.; Li, L.; Yuan, W. Ultra-dispersed α-MoC1-x embedded in a plum-like N-doped carbon framework as a synergistic adsorption-electrocatalysis interlayer for high-performance Li-S batteries. Small 2024, 20, e2306140.

72. Zhang, H.; Jin, H.; Yang, Y.; et al. Understanding the synergetic interaction within α-MoC/β-Mo2C heterostructured electrocatalyst. J. Energy. Chem. 2019, 35, 66-70.

73. Han, K.; Guo, D.; Li, M.; et al. Mixed valence Mo2C-MoC/C catalyst enhances polysulfides conversion kinetics in lithium-sulfur batteries. Appl. Surf. Sci. 2024, 663, 160138.

74. Liu, X.; Wang, J.; Wang, W.; et al. Interfacial synergy in Mo2C/MoC heterostructure promoting sequential polysulfide conversion in high-performance lithium-sulfur battery. Small 2024, 20, e2307902.

75. Jiang, G.; Xu, F.; Yang, S.; Wu, J.; Wei, B.; Wang, H. Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-performance lithium-sulfur batteries. J. Power. Sources. 2018, 395, 77-84.

76. Ma, F.; Srinivas, K.; Zhang, X.; et al. Mo2N Quantum dots decorated N-doped graphene nanosheets as dual-functional interlayer for dendrite-free and shuttle-free lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2206113.

77. Yang, M.; Liu, P.; Qu, Z.; et al. Nitrogen-vacancy-regulated Mo2N quantum dots electrocatalyst enables fast polysulfides redox for high-energy-density lithium-sulfur batteries. Nano. Energy. 2022, 104, 107922.

78. Cheng, M.; Xing, Z.; Yan, R.; et al. Oxygen-modulated metal nitride clusters with moderate binding ability to insoluble Li2Sx for reversible polysulfide electrocatalysis. InfoMat 2023, 5, e12387.

79. Liu, Z.; Lian, R.; Wu, Z.; et al. Ordered dual-channel carbon embedded with molybdenum nitride catalytically induced high-performance lithium-sulfur battery. Chem. Eng. J. 2022, 431, 134163.

80. Tan, T.; Chen, N.; Wang, Z.; et al. Thorn-like carbon nanofibers combined with molybdenum nitride nanosheets as a modified separator coating: an efficient chemical anchor and catalyst for Li-S batteries. ACS. Appl. Energy. Mater. 2022, 5, 6654-62.

81. Li, R.; Peng, H.; Wu, Q.; et al. Sandwich-like catalyst-carbon-catalyst trilayer structure as a compact 2D host for highly stable lithium-sulfur batteries. Angew. Chem. Int. Ed. 2020, 59, 12129-38.

82. Liu, Y.; Xu, J.; Cao, Y.; et al. Promoting polysulfide redox kinetics by tuning the non-metallic p-band of Mo-based compounds. J. Mater. Chem. A. 2022, 10, 11477-87.

83. Kong, Y.; Wang, L.; Mamoor, M.; et al. Co/Mon invigorated bilateral kinetics modulation for advanced lithium-sulfur batteries. Adv. Mater. 2024, 36, e2310143.

84. Dewangan, K.; Patil, S. S.; Joag, D. S.; More, M. A.; Gajbhiye, N. S. Topotactical nitridation of α-MoO3 fibers to γ-Mo2N fibers and its field emission properties. J. Phys. Chem. C. 2010, 114, 14710-5.

85. Machon, D.; Daisenberger, D.; Soignard, E.; et al. High pressure - high temperature studies and reactivity of γ-Mo2N and δ-MoN. Phys. Status. Solidi. 2006, 203, 831-6.

86. Liu, S.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. D. Efficient electrochemical reduction of CO2 to HCOOH over Sub-2 nm SnO2 quantum wires with exposed grain boundaries. Angew. Chem. Int. Ed. 2019, 58, 8499-503.

87. Wang, C.; Wang, S.; He, Y.; et al. Combining fast Li-ion battery cycling with large volumetric energy density: grain boundary induced high electronic and ionic conductivity in Li4Ti5O12 spheres of densely packed nanocrystallites. Chem. Mater. 2015, 27, 5647-56.

88. Yang, J.; Cai, D.; Lin, Q.; et al. Regulating the Li2S deposition by grain boundaries in metal nitrides for stable lithium-sulfur batteries. Nano. Energy. 2022, 91, 106669.

89. Niu, S.; Zhang, S.; Shi, R.; et al. Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries. Energy. Storage. Mater. 2020, 33, 73-81.

90. Wang, P.; Li, N.; Zhang, Z.; et al. Synergetic enhancement of polysulfide chemisorption and electrocatalysis over bicontinuous MoN@N-rich carbon porous nano-octahedra for Li-S batteries. J. Mater. Chem. A. 2019, 7, 21934-43.

91. Chen, G.; Li, Y.; Zhong, W.; et al. MOFs-derived porous Mo2C-C nano-octahedrons enable high-performance lithium-sulfur batteries. Energy. Storage. Mater. 2020, 25, 547-54.

92. Wang, Q.; Qin, B.; Jiang, Q.; et al. Highly dispersed conductive and electrocatalytic mediators enabling rapid polysulfides conversion for lithium sulfur batteries. Chem. Eng. J. 2023, 476, 146865.

93. Huang, S.; Wang, Z.; Von, Lim., Y.; et al. Recent advances in heterostructure engineering for lithium-sulfur batteries. Adv. Energy. Mater. 2021, 11, 2003689.

94. Lee, H.; Nam, H.; Moon, J. H. Seamless integration of nanoscale crystalline-amorphous MoO3 domains for high-performance lithium-sulfur batteries. Energy. Storage. Mater. 2024, 70, 103551.

95. Jiao, X.; Hu, J.; Zuo, Y.; Qi, J.; Yan, W.; Zhang, J. Self-recovery catalysts of ZnIn2S4@In2O3 heterostructures with multiple catalytic centers for cascade catalysis in lithium-sulfur battery. Nano. Energy. 2024, 119, 109078.

96. Zhao, M.; Tan, P.; Cai, D.; et al. Customizing component regulated dense heterointerfaces for crafting robust lithium-sulfur batteries. Adv. Funct. Mater. 2023, 33, 2211505.

97. Zhang, W.; Li, H.; Tao, R.; et al. In-situ constructing hetero-structured Mo2C-Mo2N embedded in carbon nanosheet as an efficient separator modifier for high-performance lithium-sulfur batteries. Chem. Eng. J. 2023, 475, 146133.

98. Li, X. H.; Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. Chem. Soc. Rev. 2013, 42, 6593-604.

99. Wang, Y.; Zhang, R.; Sun, Z.; et al. Spontaneously formed mott-schottky electrocatalyst for lithium-sulfur batteries. Adv. Mater. Inter. 2020, 7, 1902092.

100. Li, X.; Zuo, Y.; Zhang, Y.; et al. Controllable sulfurization of MXenes to in-plane multi-heterostructures for efficient sulfur redox kinetics. Adv. Energy. Mater. 2024, 14, 2303389.

101. Du, S.; Yu, Y.; Liu, X.; et al. Heterostructure Mo2C/α-MoO3/G catalyst based heterogeneous catalysis/deposition mechanism for high-performance Li-S battery. Chem. Eng. J. 2024, 500, 157002.

102. Zhang, K.; Zhao, Z.; Chen, H.; et al. A review of advances in heterostructured catalysts for Li-S batteries: structural design and mechanism analysis. Small 2025, 21, e2409674.

103. Chen, L.; Cao, G.; Li, Y.; et al. A review on engineering transition metal compound catalysts to accelerate the redox kinetics of sulfur cathodes for lithium-sulfur batteries. Nanomicro. Lett. 2024, 16, 97.

104. Yan, L.; Luo, N.; Kong, W.; et al. Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. J. Power. Sources. 2018, 389, 169-77.

105. Imtiaz, S.; Ali, Zafar., Z.; Razaq, R.; et al. Electrocatalysis on separator modified by molybdenum trioxide nanobelts for lithium-sulfur batteries. Adv. Mater. Inter. 2018, 5, 1800243.

106. Wang, L.; Li, X.; Zhang, Y.; et al. Subnanometer MoP clusters confined in mesoporous carbon (CMK-3) as superior electrocatalytic sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 2022, 446, 137050.

107. Jiang, Y.; Du, M.; Geng, P.; Sun, B.; Zhu, R.; Pang, H. CoO/MoO3@Nitrogen-doped carbon hollow heterostructures for efficient polysulfide immobilization and enhanced ion transport in lithium-sulfur batteries. J. Colloid. Interface. Sci. 2024, 664, 617-25.

108. Song, M.; Liu, Y.; Wang, X.; et al. Atomic substitution engineering-induced domino synergistic catalysis in Li-S batteries. Chem. Eng. J. 2024, 502, 157926.

109. Liu, Y.; Meng, Q.; Yang, R.; et al. Anchoring polysulfides with ternary Fe3O4/graphitic carbon/porous carbon fiber hierarchical structures for high-rate lithium-sulfur batteries. J. Energy. Storage. 2025, 105, 114591.

110. Lu, Y.; Qin, J.; Shen, T.; et al. Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li-S batteries. Adv. Energy. Mater. 2021, 11, 2101780.

111. Jiang, X.; Zhang, S.; Zou, B.; et al. Electrospun CoSe@NC nanofiber membrane as an effective polysulfides adsorption-catalysis interlayer for Li-S batteries. Chem. Eng. J. 2022, 430, 131911.

112. Liu, G.; Zeng, Q.; Sui, X.; et al. Modulating the d-p orbital coupling of manganese chalcogenides for efficient polysulfides conversion in lithium-sulfur batteries. J. Power. Sources. 2022, 552, 232244.

113. Zhang, W.; Liu, J.; Cai, W.; et al. Engineering d-p orbital hybridization through regulation of interband energy separation for durable aqueous Zn//VO2(B) batteries. Chem. Eng. J. 2023, 464, 142711.

114. Yu, J.; Yong, X.; Lu, S. p-d orbital hybridization engineered single-atom catalyst for electrocatalytic ammonia synthesis. Energy. Environ. Mater. 2024, 7, e12587.

115. Yu, Z.; Gan, C.; Mijailovic, A. S.; et al. Lithium dendrite deflection at mixed ionic-electronic conducting interlayers in solid electrolytes. Adv. Energy. Mater. 2025, 15, 2403179.

116. Shen, K.; Shi, W.; Song, H.; et al. Solid catholyte with regulated interphase redox for all-solid-state lithium-sulfur batteries. Adv. Mater. 2025, 37, e2417171.

117. George, C.; Morris, A. J.; Modarres, M. H.; De, Volder., M. Structural evolution of electrochemically lithiated MoS2 nanosheets and the role of carbon additive in Li-ion batteries. Chem. Mater. 2016, 28, 7304-10.

118. Li, H.; Wang, R.; Song, J.; et al. In situ-constructed LixMoS2 with highly exposed interface boosting high-loading and long-life cathode for all-solid-state Li-S batteries. Energy. Environ. Mater. 2024, 7, e12687.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/