REFERENCES
1. He, W.; Zhang, G.; Zhang, X.; Ji, J.; Li, G.; Zhao, X. Recent development and application of thermoelectric generator and cooler. Appl. Energy. 2015, 143, 1-25.
2. Zhang, A.; Pang, D.; Wang, B.; Wang, J. Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting. Energy 2023, 262, 125621.
3. Li, C.; Jiang, F.; Liu, C.; Liu, P.; Xu, J. Present and future thermoelectric materials toward wearable energy harvesting. Appl. Mater. Today. 2019, 15, 543-57.
4. Lu, N.; Li, L.; Liu, M. A review of carrier thermoelectric-transport theory in organic semiconductors. Phys. Chem. Chem. Phys. 2016, 18, 19503-25.
5. Tang, W.; Qian, W.; Jia, S.; et al. BiCuSeO based thermoelectric materials: innovations and challenges. Mater. Today. Phys. 2023, 35, 101104.
6. Wang, Y.; Yang, L.; Shi, X. L.; et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv. Mater. 2019, 31, e1807916.
7. Feng, J.; Li, J.; Liu, R. Low-temperature thermoelectric materials and applications. Nano. Energy. 2024, 126, 109651.
8. Zhao, X.; Chen, Z.; Zhuo, H.; et al. Thermoelectric generator based on anisotropic wood aerogel for low-grade heat energy harvesting. J. Mater. Sci. Technol. 2022, 120, 150-8.
9. Bu, Z.; Zhang, X.; Hu, Y.; et al. A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Nat. Commun. 2022, 13, 237.
10. Ang, A. K. R.; Yamazaki, I.; Hirata, K.; Singh, S.; Matsunami, M.; Takeuchi, T. Development of Cu2Se/Ag2(S,Se)-based monolithic thermoelectric generators for low-grade waste heat energy harvesting. ACS. Appl. Mater. Interfaces. 2023, 15, 46962-70.
11. Xu, C.; Liang, Z.; Ren, W.; Song, S.; Zhang, F.; Ren, Z. Realizing high energy conversion efficiency in a novel segmented-
12. Liu, Z.; Gao, W.; Oshima, H.; Nagase, K.; Lee, C. H.; Mori, T. Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nat. Commun. 2022, 13, 1120.
13. Li, W.; Poudel, B.; Kishore, R. A.; et al. Toward high conversion efficiency of thermoelectric modules through synergistical optimization of layered materials. Adv. Mater. 2023, 35, e2210407.
14. Soleimani, Z.; Zoras, S.; Ceranic, B.; Cui, Y.; Shahzad, S. A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials. Nano. Energy. 2021, 89, 106325.
15. Lee, B.; Cho, H.; Park, K. T.; et al. High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat. Commun. 2020, 11, 5948.
16. Jeong, Y. J.; Jung, J.; Suh, E. H.; Yun, D.; Oh, J. G.; Jang, J. Self-healable and stretchable organic thermoelectric materials: electrically percolated polymer nanowires embedded in thermoplastic elastomer matrix. Adv. Funct. Mater. 2020, 30, 1905809.
17. Akbar, Z. A.; Malik, Y. T.; Kim, D. H.; Cho, S.; Jang, S. Y.; Jeon, J. W. Self-healable and stretchable ionic-liquid-based thermoelectric composites with high ionic Seebeck coefficient. Small 2022, 18, e2106937.
18. He, H.; Ouyang, J. Enhancements in the mechanical stretchability and thermoelectric properties of PEDOT:PSS for flexible electronics applications. Acc. Mater. Res. 2020, 1, 146-57.
19. Zhao, D.; Würger, A.; Crispin, X. Ionic thermoelectric materials and devices. J. Energy. Chem. 2021, 61, 88-103.
20. Jia, S.; Qian, W.; Yu, P.; et al. Ionic thermoelectric materials: innovations and challenges. Mater. Today. Phys. 2024, 42, 101375.
21. Fu, M.; Sun, Z.; Yuan, Y.; Yue, K. Ionic thermoelectric materials based on the thermodiffusion effect: mechanism, advancements, and applications. Macro. Chem. Phys. 2025, 226, 2400358.
22. Lee, S. W.; Yang, Y.; Lee, H. W.; et al. An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun. 2014, 5, 3942.
23. Mentor, J. J.; Torres, R.; Hallinan, D. T. The soret effect in dry polymer electrolyte. Mol. Syst. Des. Eng. 2020, 5, 856-63.
24. Li, M.; Hong, M.; Dargusch, M.; Zou, J.; Chen, Z. High-efficiency thermocells driven by thermo-electrochemical processes. Trends. Chem. 2021, 3, 561-74.
25. Zhao, D.; Wang, H.; Khan, Z. U.; et al. Ionic thermoelectric supercapacitors. Energy. Environ. Sci. 2016, 9, 1450-7.
26. Fang, Y.; Cheng, H.; He, H.; et al. Stretchable and transparent ionogels with high thermoelectric properties. Adv. Funct. Mater. 2020, 30, 2004699.
27. Cheng, H.; Le, Q.; Liu, Z.; Qian, Q.; Zhao, Y.; Ouyang, J. Ionic thermoelectrics: principles, materials and applications. J. Mater. Chem. C. 2022, 10, 433-50.
28. Cheng, H.; He, X.; Fan, Z.; Ouyang, J. Flexible quasi-solid state ionogels with remarkable Seebeck coefficient and high thermoelectric properties. Adv. Energy. Mater. 2019, 9, 1901085.
29. Chen, B.; Chen, Q.; Xiao, S.; Feng, J.; Zhang, X.; Wang, T. Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions. Sci. Adv. 2021, 7, eabi7233.
30. Li, T.; Zhang, X.; Lacey, S. D.; et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 2019, 18, 608-13.
31. Ke, J.; Zhao, X.; Yang, J.; et al. Enhanced ion-selective diffusion achieved by supramolecular interaction for high thermovoltage and thermal stability. Energy. Environ. Mater. 2024, 7, e12562.
32. Wang, Z.; Li, N.; Zhang, Z.; Cui, X.; Zhang, H. Hydrogel-based energy harvesters and self-powered sensors for wearable applications. Nanoenergy. Adv. 2023, 3, 315-42.
33. Zhang, C.; Shi, X.; Liu, Q.; Chen, Z. Hydrogel-based functional materials for thermoelectric applications: progress and perspectives. Adv. Funct. Mater. 2024, 34, 2410127.
34. Yu, M.; Li, H.; Li, Y.; et al. Ionic thermoelectric gels and devices: progress, opportunities, and challenges. EnergyChem 2024, 6, 100123.
35. Qian, W.; Jia, S.; Yu, P.; et al. Highly stretchable, low-hysteresis, and antifreeze hydrogel for low-grade thermal energy harvesting in ionic thermoelectric supercapacitors. Mater. Today. Phys. 2024, 49, 101589.
36. Li, S.; Xu, Y.; Li, Z.; Zhang, S.; Dou, H.; Zhang, X. An n-type ionic thermoelectric hydrogel with confined cation diffusion for boosted low-grade heat harvesting. J. Mater. Chem. A. 2025, 13, 3913-21.
37. Chen, L.; Lou, J.; Rong, X.; et al. Super-stretching and high-performance ionic thermoelectric hydrogels based on carboxylated bacterial cellulose coordination for self-powered sensors. Carbohydr. Polym. 2023, 321, 121310.
38. Dai, Y.; Wang, H.; Qi, K.; et al. Electrode-dependent thermoelectric effect in ionic hydrogel fiber for self-powered sensing and low-grade heat harvesting. Chem. Eng. J. 2024, 497, 154970.
39. Zhang, Y.; Dai, Y.; Xia, F.; Zhang, X. Gelatin/polyacrylamide ionic conductive hydrogel with skin temperature-triggered adhesion for human motion sensing and body heat harvesting. Nano. Energy. 2022, 104, 107977.
40. Han, Y.; Wei, H.; Du, Y.; et al. Ultrasensitive flexible thermal sensor arrays based on high-thermopower ionic thermoelectric hydrogel. Adv. Sci. 2023, 10, e2302685.
41. Lee, C. Y.; Hong, S. H.; Liu, C. L. Recent progress in polymer gel-based ionic thermoelectric devices: materials, methods, and perspectives. Macromol. Rapid. Commun. 2025, 46, e2400837.
42. Son, C. Y.; Wang, Z. G. Ion transport in small-molecule and polymer electrolytes. J. Chem. Phys. 2020, 153, 100903.
43. Wu, Z.; Wang, B.; Li, J.; et al. Advanced bacterial cellulose ionic conductors with gigantic thermopower for low-grade heat harvesting. Nano. Lett. 2022, 22, 8152-60.
44. Madduma-Bandarage, U. S. K.; Madihally, S. V. Synthetic hydrogels: synthesis, novel trends, and applications. J. Appl. Polym. Sci. 2021, 138, 50376.
45. Hsiao, Y. C.; Lee, L. C.; Lin, Y. T.; et al. Stretchable polyvinyl alcohol and sodium alginate double network ionic hydrogels for low-grade heat harvesting with ultrahigh thermopower. Mater. Today. Energy. 2023, 37, 101383.
46. Yossef, M.; Baniasadi, H.; Kallio, T.; Perry, M.; Puttonen, J. Ionic thermoelectricity of salt-free PVA-hydrogel. Appl. Mater. Today. 2024, 38, 102240.
47. Yang, X.; Tian, Y.; Wu, B.; et al. High-performance ionic thermoelectric supercapacitor for integrated energy conversion-storage. Energy. Environ. Mater. 2022, 5, 954-61.
48. Wang, Y.; Liu, X.; Li, S.; et al. Transparent, healable elastomers with high mechanical strength and elasticity derived from hydrogen-bonded polymer complexes. ACS. Appl. Mater. Interfaces. 2017, 9, 29120-9.
49. Li, Q.; Han, C. G.; Wang, S.; et al. Anionic entanglement-induced giant thermopower in ionic thermoelectric material Gelatin-CF3SO3K-CH3SO3K. eScience 2023, 3, 100169.
50. Chen, B.; Feng, J.; Chen, Q.; et al. Specific behavior of transition metal chloride complexes for achieving giant ionic thermoelectric properties. NPJ. Flex. Electron. 2022, 6, 213.
51. Sui, X.; Guo, H.; Cai, C.; et al. Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chem. Eng. J. 2021, 419, 129478.
52. Sun, S.; Li, M.; Shi, X.; Chen, Z. Advances in ionic thermoelectrics: from materials to devices. Adv. Energy. Mater. 2023, 13, 2203692.
53. Kishore, R. A.; Nozariasbmarz, A.; Poudel, B.; Sanghadasa, M.; Priya, S. Ultra-high performance wearable thermoelectric coolers with less materials. Nat. Commun. 2019, 10, 1765.
54. Wang, H.; Zhao, D.; Khan, Z. U.; et al. Ionic thermoelectric figure of merit for charging of supercapacitors. Adv. Electron. Mater. 2017, 3, 1700013.
55. Lan, J. L.; Ma, W.; Deng, C.; Ren, G. K.; Lin, Y. H.; Yang, X. High thermoelectric performance of Bi1-xKx CuSeO prepared by combustion synthesis. J. Mater. Sci. 2017, 52, 11569-79.
56. Massetti, M.; Jiao, F.; Ferguson, A. J.; et al. Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 2021, 121, 12465-547.
57. Yang, L.; Chen, Z.; Dargusch, M. S.; Zou, J. High performance thermoelectric materials: progress and their applications. Adv. Energy. Mater. 2018, 8, 1701797.
58. de Groot, S. R.; Mazur, P.; Choi, S. Non-equilibrium thermodynamics. Phys. Today. 1963, 16, 70-1.
61. Liu, J.; Zeng, W.; Tao, X. Gigantic effect due to phase transition on thermoelectric properties of ionic sol-gel materials. Adv. Funct. Mater. 2022, 32, 2208286.
63. Paulsen, B. D.; Tybrandt, K.; Stavrinidou, E.; Rivnay, J. Organic mixed ionic-electronic conductors. Nat. Mater. 2020, 19, 13-26.
64. Jia, S.; Qian, W.; Yu, P.; et al. Realization of hydrogel electrolytes with high thermoelectric properties: utilization of the hofmeister effect. ACS. Appl. Mater. Interfaces. 2024, 16, 69519-28.
65. Cheng, H.; Wang, Z.; Guo, Z.; et al. Cellulose-based thermoelectric composites: a review on mechanism, strategies and applications. Int. J. Biol. Macromol. 2024, 275, 132908.
66. Liu, Y.; Zhang, Q.; Odunmbaku, G. O.; et al. Solvent effect on the Seebeck coefficient of Fe2+/Fe3+ hydrogel thermogalvanic cells. J. Mater. Chem. A. 2022, 10, 19690-8.
67. Zhou, Y.; Dong, Z.; He, Y.; et al. Multi-ionic hydrogel with outstanding heat-to-electrical performance for low-grade heat harvesting. Chem. Asian. J. 2022, 17, e202200850.
68. He, Y.; Zhang, Q.; Cheng, H.; et al. Role of ions in hydrogels with an ionic Seebeck coefficient of 52.9 MV K-1. J. Phys. Chem. Lett. 2022, 13, 4621-7.
69. Cheng, H.; Ouyang, J. Soret effect of ionic liquid gels for thermoelectric conversion. J. Phys. Chem. Lett. 2022, 13, 10830-42.
70. Muddasar, M.; Menéndez, N.; Quero, Á.; et al. Highly-efficient sustainable ionic thermoelectric materials using lignin-derived hydrogels. Adv. Compos. Hybrid. Mater. 2024, 7, 863.
71. Zhou, Y.; Yang, L.; Xu, J.; Wei, Z.; Ma, X.; Yuan, B. A bio-based alginate hydrogel with considerable thermoelectric performance, mechanical strength and flame retardancy for ultra-fast and sustained early fire-alarm system. Int. J. Biol. Macromol. 2025, 300, 140324.
72. Zhou, Z.; Wan, Y.; Zi, J.; et al. Flexible hydrogel with a coupling enhanced thermoelectric effect for low-grade heat harvest. Mater. Today. Sustain. 2023, 21, 100293.
73. Ajdary, R.; Tardy, B. L.; Mattos, B. D.; Bai, L.; Rojas, O. J. Plant nanomaterials and inspiration from nature: water interactions and hierarchically structured hydrogels. Adv. Mater. 2021, 33, e2001085.
74. Hu, Y.; Chen, M.; Qin, C.; Zhang, J.; Lu, A. Cellulose ionic conductor with tunable Seebeck coefficient for low-grade heat harvesting. Carbohydr. Polym. 2022, 292, 119650.
75. Liu, K. Y.; Hu, Y. P.; Yu, W.; Meng, C. Z.; Guo, S. J.; Li, G. X. Cellulose nanofibrils enhanced thermoelectric hydrogel with high negative Seebeck coefficient. Mater. Lett. 2024, 372, 137038.
76. Cheng, X.; Hu, Y.; Chen, P.; Qi, H.; Lu, A. Regulation of thermal migration channel in cellulose hydrogel to enhance thermopower. Chem. Eng. J. 2024, 498, 155161.
77. Chen, L.; Rong, X.; Liu, Z.; et al. Negative thermopower anisotropic ionic thermoelectric hydrogels based on synergistic coordination and hydration for low-grade heat harvesting. Chem. Eng. J. 2024, 481, 148797.
78. Liang, X.; Zhong, H. J.; Ding, H.; et al. Polyvinyl alcohol (pva)-based hydrogels: recent progress in fabrication, properties, and multifunctional applications. Polymers 2024, 16, 2755.
79. Chen, Q.; Chen, B.; Xiao, S.; et al. Giant thermopower of hydrogen ion enhanced by a strong hydrogen bond system. ACS. Appl. Mater. Interfaces. 2022, 14, 19304-14.
80. Horike, S.; Wei, Q.; Kirihara, K.; et al. Outstanding electrode-dependent Seebeck coefficients in ionic hydrogels for thermally chargeable supercapacitor near room temperature. ACS. Appl. Mater. Interfaces. 2020, 12, 43674-83.
81. Hu, Q.; Li, H.; Chen, X.; et al. Strong tough ionic organohydrogels with negative-thermopower via the synergy of coordination interaction and hofmeister effect. Adv. Funct. Mater. 2024, 34, 2406968.
82. Sennakesavan, G.; Mostakhdemin, M.; Dkhar, L.; Seyfoddin, A.; Fatihhi, S. Acrylic acid/acrylamide based hydrogels and its properties - a review. Polym. Degrad. Stab. 2020, 180, 109308.
83. Jiang, C.; Lai, X.; Wu, Z.; et al. A high-thermopower ionic hydrogel for intelligent fire protection. J. Mater. Chem. A. 2022, 10, 21368-78.
84. Sha, W.; Wang, Y.; Xiao, M.; et al. Conductive ionic thermoelectric hydrogel with negative Seebeck coefficient, self-healing and highly sensitive to temperature for photothermoelectric conversion and non-contact sensing device. Chem. Eng. J. 2024, 501, 157823.
85. Chen, J.; Zhang, L.; Tu, Y.; et al. Wearable self-powered human motion sensors based on highly stretchable quasi-solid state hydrogel. Nano. Energy. 2021, 88, 106272.
86. Liu, C.; Li, Q.; Wang, S.; Liu, W.; Fang, N. X.; Feng, S. Ion regulation in double-network hydrogel module with ultrahigh thermopower for low-grade heat harvesting. Nano. Energy. 2022, 92, 106738.
87. Zhao, D.; Martinelli, A.; Willfahrt, A.; et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles. Nat. Commun. 2019, 10, 1093.
88. Fu, M.; Sun, Z.; Liu, X.; et al. Highly stretchable, resilient, adhesive, and self-healing ionic hydrogels for thermoelectric application. Adv. Funct. Mater. 2023, 33, 2306086.
89. Fu, M.; Yuan, Y.; Liu, X.; et al. A thermosensitive ionic hydrogel for thermotropic smart windows with integrated thermoelectric energy harvesting capability. Adv. Funct. Mater. 2025, 35, 2412081.
90. Chen, J.; Shi, C.; Wu, L.; et al. Environmentally tolerant ionic hydrogel with high power density for low-grade heat harvesting. ACS. Appl. Mater. Interfaces. 2022, 14, 34714-21.
91. Wu, H.; Chen, G.; Xie, S.; Xiang, K.; Fan, Y.; Guo, Z. Waste-heat harvesting using a thermoelectric generator coupled with a hygroscopic hydrogel for use in the energy industry. J. Mater. Chem. C. 2025, 13, 1801-11.